Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Sci Adv ; 10(14): eadk1031, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569029

RESUMO

Pathologic Wnt/ß-catenin signaling drives various cancers, leading to multiple approaches to drug this pathway. Appropriate patient selection can maximize success of these interventions. Wnt ligand addiction is a druggable vulnerability in RNF43-mutant/RSPO-fusion cancers. However, pharmacologically targeting the biogenesis of Wnt ligands, e.g., with PORCN inhibitors, has shown mixed therapeutic responses, possibly due to tumor heterogeneity. Here, we show that the tumor suppressor FBXW7 is frequently mutated in RNF43-mutant/RSPO-fusion tumors, and FBXW7 mutations cause intrinsic resistance to anti-Wnt therapies. Mechanistically, FBXW7 inactivation stabilizes multiple oncoproteins including Cyclin E and MYC and antagonizes the cytostatic effect of Wnt inhibitors. Moreover, although FBXW7 mutations do not mitigate ß-catenin degradation upon Wnt inhibition, FBXW7-mutant RNF43-mutant/RSPO-fusion cancers instead lose dependence on ß-catenin signaling, accompanied by dedifferentiation and loss of lineage specificity. These FBXW7-mutant Wnt/ß-catenin-independent tumors are susceptible to multi-cyclin-dependent kinase inhibition. An in-depth understanding of primary resistance to anti-Wnt/ß-catenin therapies allows for more appropriate patient selection and use of alternative mechanism-based therapies.


Assuntos
Neoplasias , beta Catenina , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias/genética , Mutação , Linhagem Celular Tumoral , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Membrana/metabolismo
2.
Cell Death Dis ; 15(3): 212, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485719

RESUMO

During the maturation of hematopoietic stem/progenitor cells (HSPCs) to fully differentiated mature B lymphocytes, developing lymphocytes may undergo malignant transformation and produce B-cell lymphomas. Emerging evidence shows that through the endothelial-hematopoietic transition, specialized endothelial cells called the hemogenic endothelium can differentiate into HSPCs. However, the contribution of genetic defects in hemogenic endothelial cells to B-cell lymphomagenesis has not yet been investigated. Here, we report that mice with endothelial cell-specific deletion of Fbw7 spontaneously developed diffuse large B-cell lymphoma (DLBCL) following Bcl6 accumulation. Using lineage tracing, we showed that B-cell lymphomas in Fbw7 knockout mice were hemogenic endothelium-derived. Mechanistically, we found that FBW7 directly interacted with Bcl6 and promoted its proteasomal degradation. FBW7 expression levels are inversely correlated with BCL6 expression. Additionally, pharmacological disruption of Bcl6 abolished Fbw7 deletion-induced B-cell lymphomagenesis. We conclude that selective deletion of E3 ubiquitin ligase FBW7 in VE-cadherin positive endothelial cells instigates diffuse large B-cell lymphoma via upregulation of BCL6 stability. In addition, the mice with endothelial cell-specific deletion of Fbw7 provide a valuable preclinical platform for in vivo development and evaluation of novel therapeutic interventions for the treatment of DLBCL.


Assuntos
Antígenos CD , Caderinas , Linfoma Difuso de Grandes Células B , Ubiquitina-Proteína Ligases , Animais , Camundongos , Células Endoteliais/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 121(12): e2309902121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483988

RESUMO

FBXW7 is an E3 ubiquitin ligase that targets proteins for proteasome-mediated degradation and is mutated in various cancer types. Here, we use CRISPR base editors to introduce different FBXW7 hotspot mutations in human colon organoids. Functionally, FBXW7 mutation reduces EGF dependency of organoid growth by ~10,000-fold. Combined transcriptomic and proteomic analyses revealed increased EGFR protein stability in FBXW7 mutants. Two distinct phosphodegron motifs reside in the cytoplasmic tail of EGFR. Mutations in these phosphodegron motifs occur in human cancer. CRISPR-mediated disruption of the phosphodegron motif at T693 reduced EGFR degradation and EGF growth factor dependency. FBXW7 mutant organoids showed reduced sensitivity to EGFR-MAPK inhibitors. These observations were further strengthened in CRC-derived organoid lines and validated in a cohort of patients treated with panitumumab. Our data imply that FBXW7 mutations reduce EGF dependency by disabling EGFR turnover.


Assuntos
Proteínas F-Box , Neoplasias , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Proteômica , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas F-Box/genética
4.
Breast Cancer Res ; 26(1): 37, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454442

RESUMO

Increasing evidence shows the oncogenic function of FAM83D in human cancer, but how FAM83D exerts its oncogenic function remains largely unclear. Here, we investigated the importance of FAM83D/FBXW7 interaction in breast cancer (BC). We systematically mapped the FBXW7-binding sites on FAM83D through a comprehensive mutational analysis together with co-immunoprecipitation assay. Mutations at the FBXW7-binding sites on FAM83D led to that FAM83D lost its capability to promote the ubiquitination and proteasomal degradation of FBXW7; cell proliferation, migration, and invasion in vitro; and tumor growth and metastasis in vivo, indicating that the FBXW7-binding sites on FAM83D are essential for its oncogenic functions. A meta-evaluation of FAM83D revealed that the prognostic impact of FAM83D was independent on molecular subtypes. The higher expression of FAM83D has poorer prognosis. Moreover, high expression of FAM83D confers resistance to chemotherapy in BCs, which is experimentally validated in vitro. We conclude that identification of FBXW7-binding sites on FAM83D not only reveals the importance for FAM83D oncogenic function, but also provides valuable insights for drug target.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Humanos , Feminino , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Prognóstico , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
5.
J Hazard Mater ; 468: 133704, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364577

RESUMO

Our previous study revealed that 1-nitropyrene (1-NP) exposure evoked pulmonary fibrosis in mice. However, the exact mechanism remained elusive. We found that 1-NP induced telomere damage and cellular senescence in mice lungs, and two alveolar epithelial cells lines. 1-NP downregulated telomere repeat binding factor 2 (TRF2), and upregulated FBXW7. Mechanistically, 1-NP-caused TRF2 ubiquitination and proteasomal degradation depended on E3 ubiquitin ligase activity of FBXW7. Moreover, 1-NP upregulated FBXW7 m6A modification via an ALKBH5-YTHDF1-dependent manner. Further analysis suggested 1-NP promoted ALKBH5 SUMOylation and subsequent proteasomal degradation. Additionally, 1-NP evoked mitochondrial reactive oxygen species (mtROS) overproduction. Mito-TEMPO, a mitochondrial-targeted antioxidant, mitigated 1-NP-caused mtROS overproduction, ALKBH5 SUMOylation, FBXW7 m6A modification, TRF2 degradation, cellular senescence, and pulmonary fibrosis. Taken together, mtROS-initiated ALKBH5 SUMOylation and subsequent FBXW7 m6A modification is indispensable for TRF2 degradation and cellular senescence in alveolar epithelial cells during 1-NP-induced pulmonary fibrosis. Our study provides target intervention measures towards 1-NP-evoked pulmonary fibrosis.


Assuntos
Adenina/análogos & derivados , Fibrose Pulmonar , Pirenos , Sumoilação , Animais , Camundongos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células Epiteliais Alveolares/metabolismo , Fibrose Pulmonar/induzido quimicamente
6.
Cell Death Dis ; 15(1): 34, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212325

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Mutação/genética , Transdução de Sinais , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Microambiente Tumoral
7.
Gastric Cancer ; 27(2): 235-247, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142463

RESUMO

BACKGROUND: Imatinib contributes to improving prognosis of high-risk or unresectable gastrointestinal stromal tumors (GISTs). As therapeutic efficacy is limited by imatinib resistance and toxicity, the exploration of predictive markers of imatinib therapeutic efficacy that enables patients to utilize more effective therapeutic strategies remains urgent. METHODS: The correlation between FBXW7 and imatinib resistance via FBXW7-MCL1 axis was evaluated in vitro and in vivo experiments. The significance of FBXW7 as a predictor of imatinib treatment efficacy was examined in 140 high-risk patients with GISTs. RESULTS: The ability of FBXW7 to predict therapeutic efficacy of adjuvant imatinib in high-risk GIST patients was determined through 5-year recurrence-free survival (RFS) rates analysis and multivariate analysis. FBXW7 affects imatinib sensitivity by regulating apoptosis in GIST-T1 cells. FBXW7 targets MCL1 to regulate apoptosis. MCL1 involves in the regulation of imatinib sensitivity through inhibiting apoptosis in GIST-T1 cells. FBXW7 regulates imatinib sensitivity by down-regulating MCL1 to enhance imatinib-induced apoptosis in vitro. FBXW7 regulates imatinib sensitivity of GIST cells by targeting MCL1 to predict efficacy of imatinib treatment in vivo. CONCLUSIONS: FBXW7 regulates imatinib sensitivity by inhibiting MCL1 to enhance imatinib-induced apoptosis in GIST, and predicts efficacy of imatinib treatment in high-risk GIST patients treated with imatinib.


Assuntos
Antineoplásicos , Proteína 7 com Repetições F-Box-WD , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Mesilato de Imatinib , Neoplasias Gástricas , Humanos , Antineoplásicos/uso terapêutico , Proteína 7 com Repetições F-Box-WD/metabolismo , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Mesilato de Imatinib/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico
8.
Oral Dis ; 29(8): 3259-3267, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38055341

RESUMO

BACKGROUND: Oral cancer is associated with high risk of morbidity and mortality. However, effective treatment for oral cancer is urgently required in clinics. In this study, we aimed to determine whether F-box/WD repeat-containing protein 7 (FBXW7), an essential tumor suppressor gene, can regulate autophagy and improve the prognosis in oral squamous cell carcinoma (OSCC). METHODS: mRNA levels of FBXW7 and myeloid cell leukemia 1 (MCL-1) in OSCC tissues and adjacent normal tissues were measured by qRT-PCR. FBXW7 and MCL-1 were overexpressed in OSCC cell line using lentivirus containing FBXW7 and MCL-1, respectively. Protein expression was determined by Western blot. RESULTS: The mRNA and protein levels of FBXW7 were decreased in patients with OSCC, whereas the mRNA and protein levels of MCL-1 were increased. Moreover, the mRNA coding for autophagy proteins was reduced in patients with OSCC. Additionally, it was found that overexpression of FBXW7 significantly reduced MCL-1 expression and upregulated autophagy-related proteins, including Beclin1, autophagy related 7, and microtubule-associated protein light chain 3. CONCLUSION: Our results suggest that FBXW7 affects autophagy through MCL1 in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Carcinoma de Células Escamosas/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Autofagia/genética , Neoplasias de Cabeça e Pescoço/genética , RNA Mensageiro , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
9.
Nat Commun ; 14(1): 6982, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914694

RESUMO

Nonalcoholic steatohepatitis (NASH) is epidemiologically associated with obesity and diabetes and can lead to liver cirrhosis and hepatocellular carcinoma if left untreated. The intricate signaling pathways that orchestrate hepatocyte energy metabolism and cellular stress, intrahepatic cell crosstalk, as well as interplay between peripheral tissues remain elusive and are crucial for the development of anti-NASH therapies. Herein, we reveal E3 ligase FBXW7 as a key factor regulating hepatic catabolism, stress responses, systemic energy homeostasis, and NASH pathogenesis with attenuated FBXW7 expression as a feature of advanced NASH. Multiomics and pharmacological intervention showed that FBXW7 loss-of-function in hepatocytes disrupts a metabolic transcriptional axis conjointly controlled by the nutrient-sensing nuclear receptors ERRα and PPARα, resulting in suppression of fatty acid oxidation, elevated ER stress, apoptosis, immune infiltration, fibrogenesis, and ultimately NASH progression in male mice. These results provide the foundation for developing alternative strategies co-targeting ERRα and PPARα for the treatment of NASH.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Hepatócitos/metabolismo , Homeostase , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Nutrientes , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
10.
Neoplasma ; 70(6): 733-746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014700

RESUMO

F-box and WD repeat domain containing 7 (FBXW7) is an aboriginal and high-frequency mutant gene associated with esophageal squamous cell carcinoma (ESCC). This study was designed to determine the clinical value and molecular mechanisms of FBXW7 in the development of ESCC. The clinical significance of FBXW7 was analyzed in ESCC from TCGA data. The effects of FBXW7 on proliferation, colony formation, migration and invasion, angiogenesis, and apoptosis were tested in ESCC cells. PCR-array, sphere formation assay, and quantitative real-time polymerase chain reaction (qPCR) were used to explore the mechanism of FBXW7. FBXW7 was a significantly mutated gene in ESCC. It was an independent and potential predictor for survival in ESCC patients. In addition, FBXW7 overexpression significantly inhibited ESCC cell proliferation, migration, invasion, angiogenesis, and promoted cell apoptosis. PCR array revealed that FBXW7 overexpression leads to a significant change of gene expressions associated with angiogenesis, cell senescence, and DNA damage and repair. Sphere formation assay and qPCR showed FBXW7 was associated with ESCC stem cell formation. Our results suggest that FBXW7 may act as a tumor suppressor by repressing cancer stem cell formation and regulating tumor angiogenesis, cell senescence, DNA damage, and repair in ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética
11.
Cell Mol Life Sci ; 80(12): 374, 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38008853

RESUMO

Faithful chromosome segregation requires correct attachment of kinetochores with the spindle microtubules. Erroneously-attached kinetochores recruit proteins to activate Spindle assembly checkpoint (SAC), which senses the errors and signals cells to delay anaphase progression for error correction. Temporal control of the levels of SAC activating-proteins is critical for checkpoint activation and silencing, but its mechanism is not fully understood. Here, we show that E3 ubiquitin ligase, SCF-FBXW7 targets BubR1 for ubiquitin-mediated degradation and thereby controls SAC in human cells. Depletion of FBXW7 results in prolonged metaphase arrest with increased stabilization of BubR1 at kinetochores. Similar kinetochore stabilization is also observed for BubR1-interacting protein, CENP-E. FBXW7 induced ubiquitination of both BubR1 and the BubR1-interacting kinetochore-targeting domain of CENP-E, but CENP-E domain degradation is dependent on BubR1. Interestingly, Cdk1 inhibition disrupts FBXW7-mediated BubR1 targeting and further, phospho-resistant mutation of Cdk1-targeted phosphorylation site, Thr 620 impairs BubR1-FBXW7 interaction and FBXW7-mediated BubR1 ubiquitination, supporting its role as a phosphodegron for FBXW7. The results demonstrate SCF-FBXW7 as a key regulator of spindle assembly checkpoint that controls stability of BubR1 and its associated CENP-E at kinetochores. They also support that upstream Cdk1 specific BubR1 phosphorylation signals the ligase to activate the process.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células HeLa , Cinetocoros/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
J Immunol ; 211(11): 1701-1713, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843504

RESUMO

Dendritic cells (DCs), a driver of psoriasis pathogenesis, produce IL-23 and trigger IL-23/IL-17 cytokine axis activation. However, the mechanisms regulating IL-23 induction remain unclear. In the current study, we found that mice with E3 ligase FBXW7 deficiency in DCs show reduced skin inflammation correlated with the reduction of IL-23/IL-17 axis cytokines in the imiquimod-induced psoriasis model. Fbxw7 deficiency results in decreased production of IL-23 in DCs. FBXW7 interacts with the lysine N-methyltransferase suppressor of variegation 39 homolog 2 (SUV39H2), which catalyzes the trimethylation of histone H3 Lys9 (H3K9) during transcription regulation. FBXW7 mediates the ubiquitination and degradation of SUV39H2, thus decreasing H3K9m3 deposition on the Il23a promoter. The Suv39h2 knockout mice displayed exacerbated skin inflammation with the IL-23/IL-17 axis overactivating in the psoriasis model. Taken together, our results indicate that FBXW7 increases IL-23 expression in DCs by degrading SUV39H2, thereby aggravating psoriasis-like inflammation. Inhibition of FBXW7 or the FBXW7/SUV39H2/IL-23 axis may represent a novel therapeutic approach to psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , Células Dendríticas/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Epigênese Genética , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Psoríase/patologia , Pele/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Immun Inflamm Dis ; 11(9): e988, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37773720

RESUMO

Osteoarthritis (OA) is a prevalent and distressing chronic degenerative joint disorder characterized by damaged articular cartilage and inflamed joints. Among risk factors, obesity has emerged as the second-leading contributor to OA after age. Obesity is believed to play a key role in the development and progression of OA. This study aimed to investigate the role and underlying mechanisms of high-fat diet (HFD)-induced obesity in the development of OA. Our findings revealed that HFD could aggravate the destabilization of the medial meniscus (DMM)-induced damage in the mouse model of obesity. Similar results were observed when macrophages obtained from HFD-fed mice were cocultured with cartilage and subsequently stimulated with interleukin-1ß (IL-1ß). Mechanistically, we observed a decrease in the expression of intraarticular macrophagic FBW7, which was implicated in the aggravation of OA in the HFD-fed animal. Furthermore, by modulating the immune status of macrophages, we found that reversing the macrophagic expression of FBW7 in these cells can alleviate the chondrocyte damage. In conclusion, this study provides novel insights into the pathological mechanisms underlying HFD-related OA development by identifying the role of FBW7 in synovial macrophages. These findings open up new avenues for research and therapeutic interventions targeting HFD-related OA.


Assuntos
Dieta Hiperlipídica , Proteína 7 com Repetições F-Box-WD , Osteoartrite , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Macrófagos , Obesidade/complicações , Obesidade/patologia , Osteoartrite/etiologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo
14.
EMBO Mol Med ; 15(10): e17094, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589076

RESUMO

High-risk endometrial cancer has poor prognosis and is increasing in incidence. However, understanding of the molecular mechanisms which drive this disease is limited. We used genetically engineered mouse models (GEMM) to determine the functional consequences of missense and loss of function mutations in Fbxw7, Pten and Tp53, which collectively occur in nearly 90% of high-risk endometrial cancers. We show that Trp53 deletion and missense mutation cause different phenotypes, with the latter a substantially stronger driver of endometrial carcinogenesis. We also show that Fbxw7 missense mutation does not cause endometrial neoplasia on its own, but potently accelerates carcinogenesis caused by Pten loss or Trp53 missense mutation. By transcriptomic analysis, we identify LEF1 signalling as upregulated in Fbxw7/FBXW7-mutant mouse and human endometrial cancers, and in human isogenic cell lines carrying FBXW7 mutation, and validate LEF1 and the additional Wnt pathway effector TCF7L2 as novel FBXW7 substrates. Our study provides new insights into the biology of high-risk endometrial cancer and suggests that targeting LEF1 may be worthy of investigation in this treatment-resistant cancer subgroup.


Assuntos
Carcinogênese , Neoplasias do Endométrio , Feminino , Humanos , Camundongos , Animais , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Carcinogênese/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Mutação , Mutação de Sentido Incorreto
15.
Cell Biochem Biophys ; 81(4): 577-597, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37624574

RESUMO

F-box proteins are involved in multiple cellular processes through ubiquitylation and consequent degradation of targeted substrates. Any significant mutation in F-box protein-mediated proteolysis can cause human malformations. The various cellular processes F-box proteins involved include cell proliferation, apoptosis, invasion, angiogenesis, and metastasis. To target F-box proteins and their associated signaling pathways for cancer treatment, researchers have developed thousands of F-box inhibitors. The most advanced inhibitor of FBW7, NVD-BK M120, is a powerful P13 kinase inhibitor that has been proven to bring about apoptosis in cancerous human lung cells by disrupting levels of the protein known as MCL1. Moreover, F-box Inhibitors have demonstrated their efficacy for treating certain cancers through targeting particular mutated proteins. This paper explores the key studies on how F-box proteins act and their contribution to malignancy development, which fabricates an in-depth perception of inhibitors targeting the F-box proteins and their signaling pathways that eventually isolate the most promising approach to anti-cancer treatments.


Assuntos
Proteínas F-Box , Neoplasias , Humanos , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteólise
16.
EMBO Mol Med ; 15(10): e18166, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587857

RESUMO

The most common gynecological cancer in Europe and the United States is endometrial. Like most cancers, early-stage endometrial cancer has a more favorable prognosis, while high-grade, including endometrioid and nonendometrioid, has the worst prognosis. In endometrioid human tumors, the tumor suppressor genes PTEN and p53 (Trp53) are frequently altered or lost, as identified in datasets from The Cancer Genome Atlas. These suppressors' somatic mutations or loss of gene expression can lead to neoplastic development, tumor progression, and therapeutic resistance. In addition, somatic missense mutations are prevalent in another tumor suppressor, the F-box and WD repeats containing 7 (FBXW7). FBXW7 is part of the SCF-ßTrCP ubiquitin complex that signals protein destruction. Specifically, FBXW7 is responsible for binding and facilitating the destabilization of proteins involved in proliferation and migration. Losing the function of multiple tumor suppressors could activate pathways involved in neoplastic progression, malignancy, therapeutic resistance, and formation of different tumor subtypes. The study by Brown et al in this issue of EMBO Mol Med (Brown et al, 2023) provides insight into the complexity of tumor suppressor mutations in malignant endometrial cancer.


Assuntos
Neoplasias do Endométrio , Proteína Supressora de Tumor p53 , Feminino , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Mutação , Europa (Continente)
17.
Inflammation ; 46(6): 2071-2088, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37432596

RESUMO

Atherosclerosis (AS), characterized by a maladaptive inflammatory response, is one of the most common causes of death among the elderly. Karyopherin subunit alpha 2 (KPNA2), a member of the nuclear transport protein family, has been reported to play a pro-inflammatory role in various pathological processes by regulating the nuclear translocation of pro-inflammatory transcription factors. However, the function of KPNA2 in AS remains unknown. ApoE-/- mice were fed high-fat diets for 12 weeks to establish an AS mice model. Human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) to establish an AS cell model. We found that KPNA2 was upregulated in the aortic roots of atherosclerotic mice and LPS-stimulated cells. KPNA2 knockdown inhibited LPS-induced secretion of pro-inflammatory factors and monocyte-endothelial adhesion in HUVECs, whereas KPNA2 overexpression exerted the opposite effects. p65 and interferon regulatory factor 3 (IRF3), the transcription factors known to regulate the transcription of pro-inflammatory genes, interacted with KPNA2, and their nuclear translocations were blocked following KPNA2 silencing. Furthermore, we found that KPNA2 protein level was decreased by E3 ubiquitin ligase F-box and WD repeat domain containing 7 (FBXW7), which was downregulated in the atherosclerotic mice. FBXW7 overexpression induced ubiquitination with subsequent proteasomal degradation of KPNA2. Meanwhile, the effects of KPNA2 deficiency on atherosclerotic lesions were further confirmed by in vivo experiments. Taken together, our study indicates that KPNA2 downregulation, regulated by FBXW7, may alleviate endothelial dysfunction and related inflammation in the progression of AS by suppressing the nuclear translocation of p65 and IRF3.


Assuntos
Aterosclerose , Ubiquitina-Proteína Ligases , Humanos , Camundongos , Animais , Idoso , Ubiquitina-Proteína Ligases/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Células Endoteliais/metabolismo , Lipopolissacarídeos , Inflamação/patologia , alfa Carioferinas
18.
Acta Biomater ; 169: 434-450, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516418

RESUMO

Radiotherapy is a mainstream modality for breast cancer treatment that employs ionizing radiation (IR) to damage tumor cell DNA and elevate ROS stress, which demonstrates multiple clinically-favorable advantages including localized treatment and low invasiveness. However, breast cancer cells may activate the p53-mediated cell cycle regulation in response to radiotherapy to repair IR-induced cellular damage and facilitate post-treatment survival. F-Box and WD Repeat Domain Containing 7 (FBXW7) is a promoter of p53 degradation and critical nexus of cell proliferation and survival events. Herein, we engineered a cooperative radio-ferroptosis-stimulatory nanomedicine through coordination-driven self-assembly between ferroptosis-inducing Fe2+ ions and FBXW7-inhibiting DNAzymes and further modification of tumor-targeting dopamine-modified hyaluronic acid (HA). The nanoassembly could be selectively internalized by breast cancer cells and disintegrated in lysosomes to release the therapeutic payload. DNAzyme readily abolishes FBXW7 expression and stabilizes phosphorylated p53 to cause irreversible G2 phase arrest for amplifying post-IR tumor cell apoptosis. Meanwhile, the p53 stabilization also inhibits the SLC7A11-cystine-GSH axis, which combines with the IR-upregulated ROS levels to amplify Fe2+-mediated ferroptotic damage. The DNAzyme-Fe-HA nanoassembly could thus systematically boost the tumor cell damaging effects of IR, presenting a simple and effective approach to augment the response of breast cancer to radiotherapy. STATEMENT OF SIGNIFICANCE: To overcome the intrinsic radioresistance in breast cancer, we prepared co-assembly of Fe2+ and FBXW7-targeted DNAzymes and modified surface with dopamine conjugated hyaluronic acid (HA), which enabled tumor-specific FBXW7-targeted gene therapy and ferroptosis therapy in IR-treated breast cancers. The nanoassembly could be activated in acidic condition to release the therapeutic contents. Specifically, the DNAzymes could selectively degrade FBXW7 mRNA in breast cancer cells to simultaneously induce accumulation of p53 and retardation of NHEJ repair, eventually inducing irreversible cell cycle arrest to promote apoptosis. The p53 stabilization would also inhibit the SLC7A11/GSH/GPX4 axis to enhance Fe2+ mediated ferroptosis. These merits could act in a cooperative manner to induce pronounced tumor inhibitory effect, offering new approaches for tumor radiosensitization in the clinics.


Assuntos
Neoplasias da Mama , DNA Catalítico , Proteínas F-Box , Ferroptose , Humanos , Feminino , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , DNA Catalítico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias da Mama/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína Supressora de Tumor p53/genética , Dopamina , Ácido Hialurônico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Pontos de Checagem do Ciclo Celular
19.
Cells ; 12(10)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37408248

RESUMO

The F-Box and WD Repeat Domain Containing 7 (FBXW7) protein has been shown to regulate cellular growth and act as a tumor suppressor. This protein, also known as FBW7, hCDC4, SEL10 or hAGO, is encoded by the gene FBXW7. It is a crucial component of the Skp1-Cullin1-F-box (SCF) complex, which is a ubiquitin ligase. This complex aids in the degradation of many oncoproteins, such as cyclin E, c-JUN, c-MYC, NOTCH, and MCL1, via the ubiquitin-proteasome system (UPS). The FBXW7 gene is commonly mutated or deleted in numerous types of cancer, including gynecologic cancers (GCs). Such FBXW7 mutations are linked to a poor prognosis due to increased treatment resistance. Hence, detection of the FBXW7 mutation may possibly be an appropriate diagnostic and prognostic biomarker that plays a central role in determining suitable individualized management. Recent studies also suggest that, under specific circumstances, FBXW7 may act as an oncogene. There is mounting evidence indicating that the aberrant expression of FBXW7 is involved in the development of GCs. The aim of this review is to give an update on the role of FBXW7 as a potential biomarker and also as a therapeutic target for novel treatments, particularly in the management of GCs.


Assuntos
Proteínas F-Box , Neoplasias dos Genitais Femininos , Feminino , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias dos Genitais Femininos/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
20.
Commun Biol ; 6(1): 689, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400551

RESUMO

MYC is one of the most commonly dysregulated proto-oncogenes in cancer. MYC promotes cancer initiation and maintenance by regulating multiple biological processes, such as proliferation and stem cell function. Here, we show that developmental regulator RUNX3 targets MYC protein for rapid degradation through the glycogen synthase kinase-3 beta-F-box/WD repeat-containing protein 7 (GSK3ß-FBXW7) proteolytic pathway. The evolutionarily conserved Runt domain of RUNX3 interacts directly with the basic helix-loop-helix leucine zipper of MYC, resulting in the disruption of MYC/MAX and MYC/MIZ-1 interactions, enhanced GSK3ß-mediated phosphorylation of MYC protein at threonine-58 and its subsequent degradation via the ubiquitin-proteasomal pathway. We therefore uncover a previously unknown mode of MYC destabilization by RUNX3 and provide an explanation as to why RUNX3 inhibits early-stage cancer development in gastrointestinal and lung mouse cancer models.


Assuntos
Núcleo Celular , Subunidade alfa 3 de Fator de Ligação ao Core , Neoplasias Pulmonares , Animais , Camundongos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteólise , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...